

17-2854223 320 South 850 East, Suite B3 .ehi, UT 84043 301-847-7722 www.analyticalnesource.com nfo@yourqualitylab.com

Certificate of Analysis

Client Information

PurHealth RX 14663 S. Heritage Crest Way Bluffdale, UT 84065 USA 301.903.7789

Sample Information

ARL ID: 691644

Date Received: 8/4/2023 Date Tested: 8/7/2023 Description: 2oz Energy Shot

Lot#: 23200

Results

Analysis	Method	†MDL/LOQ	Specification	Results	UOM	Lab ID
Complete Micro Profile Pseudomonas	USP <2021>, USP <2022>, AOAC 991.14, USP <62>					1
Total Plate Count	USP <2021>	10	Record Only	None Detected	cfu's/g	1
Coliforms	AOAC 991.14	10	Record Only	None Detected	cfu's/g	1
E. coli	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Staphylococcus aureus	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Salmonella	USP <2022>	Absent	Record Only	Absent	cfu's/10g	1
Pseudomonas aeruginosa	USP <62>	Absent	Record Only	Absent	cfu's/g	1
Yeast	USP <2021>	10	Record Only	None Detected	cfu's/g	1
Viold	USP <2021>	10	Record Only	None Detected	cfu's/g	1

Method Detection Limit (MDL):

In microbiological testing, this is the minimum level of growth that can be detected with confidence. If a result is reported as "None Detected", it means any visible prowth was below this limit.

Limit of Quantitation (LOQ):

n analytical chemistry testing, this is the minimum level of the desired analyte that can be quantified with confidence. If a result is reported as less than LOQ, it neans any detected amount was too small to report an exact number.

Under accreditation number 77504, ARL is an ISO/IEC 17025:2017 Accredited Laboratory. Uncertainty data for ISO-scoped methods is available upon request. Certificate and scope are also available upon request.

Form: arlcoa031201a Report: 691644

Printed on: 8/7/2023 3:40:34 PM

experience · professionalism · value

Released by: Jacob Teller Date Released: 8/7/2023

CERTIFICATE OF ANALYSIS

Sample Information

Batch/Lot Number: Date Collected:		Collected By:	Self-Submitted
	23200	Date Received:	08/07/2023
Description:	2 oz Energy Shot		
Producer:	PurHealth Labs	Sample Type:	Liquid Suspension
Client:	PurHealth Labs	Client Email:	admin@purhealthlabs. com
UDAF Lab#	HP23219-6 Issue Date:		09/06/2023

DACC

Notes:

Testing Summary

			Status: PASS
Analysis:	Testing Date:	Status:	Notes:
Cannabinoids	08/11/2023	PASS	
Mycotoxins	08/17/2023	PASS	

Approved By:

Brandon Forsyth, Ph.D State Chemist Date: 09/06/2023

CERTIFICATE OF ANALYSIS

Cannabinoid Analysis			Status: PASS	
Sample ID:	HP23219-6	Description:	2 oz Energy Shot	
Testing Date:	08/11/2023	Reviewed By:	Cameron Cheyne	

Method: ACL.AM.003 Analysis performed using High-Performance Liquid Chromatography (HPLC-DAD)

Analyte	Abbreviation	CAS Number	% (w/w)	mg/g
Δ9-Tetrahydrocannabidiol	Δ9-ТНС	1972-08-03	ND	ND
Δ8-Tetrahydrocannabidiol	Δ8-THC	5957-75-5	NQ	NQ
Δ9-Tetrahydrocannabinolic acid	THCA	23978-85-0	ND	ND
Δ9-Tetrahydrocannabivarin	THCV	31262-37-0	0.0002%	0.002
Cannabidiol	CBD	13956-29-1	0.0066%	0.066
Cannabidiolic acid	CBDA	1244-58-2	ND	ND
Cannabidivarin	CBDV	24274-48-4	0.0014%	0.014
Cannabinol	CBN	521-35-7	ND	ND
Cannabigerol	CBG	25654-31-3	0.0002%	0.002
Cannabichromene	CBC	20675-51-8	ND	ND
Cannabigerolic acid	CBGA	25555-57-1	ND	ND
Cannabichromenic acid	CBCA	20408-52-0	ND	ND
9(R+S)-Δ6a,10a-Tetrahydrocannabidiol	Δ3-THC	95720-01-07, 95720- 02-8	ND	ND
(6aR,9R)-∆10-Tetrahydrocannabidiol	(6aR,9R)-Δ10-THC	95543-62-7	ND	ND
(6aR,9S)-∆10-Tetrahydrocannabidiol	(6aR,9S)-Δ10-THC	95588-87-7	ND	ND
Total Cannabinoids			0.0084%	0.1
Total THC			ND	ND
Total CBD			0.01%	0.1

Unknown Cannabinoid Peak Area: NQ Status: PASS

Notes:

Total Cannabinoids is calculated as the direct sum of each of the cannabinoid values. Total THC is calculated as $\Delta 9$ -THC + (THCA x 0.877). Total CBD is calculated as CBD + (CBDA x 0.877).

ND = Not Detected, NQ = Not Quantifiable, NT = Not Tested, <LOQ = Below the limit of quantification

CERTIFICATE OF ANALYSIS

Mycotoxin Analysis Status: PASS

Sample ID: HP23219-6 Description: 2 oz Energy Shot

Testing Date: 08/17/2023 Reviewed By: Cameron Cheyne

Method: ACL.AM.004 Analysis performed using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

Analyte	Result (ppb)	Action Level (ppb)	Status
AflatoxinB1	ND	See Total Aflatoxin	
AflatoxinB2	ND	See Total Aflatoxin	-
AflatoxinG1	ND	See Total Aflatoxin	_
AflatoxinG2	ND	See Total Aflatoxin	_
Total Aflatoxin	0	20	PASS
Ochratoxin A	ND	20	PASS

Notes:

ND = Not Detected, NQ = Not Quantifiable, NT = Not Tested, <LOQ = Below the limit of quantification

The results reported herein pertain only to the indicated sample and may not be used as an endorsement of a product. The results are given under applicable provisions of the Utah Code and represent a true statement of the outcomes of the analyses conducted on the sample received by the laboratory. This report may not be reproduced, except in its entirety. © 2023 All Rights Reserved.

- - --

CERTIFICATE OF ANALYSIS

Sample Information

UDAF Lab#	HP23261-3	Issue Date:	09/25/2023
Client:	PurHealth Labs	Client Email:	dave@purhealthlabs com
Producer:	PurHealth Labs	Sample Type:	Liquid Suspension
Description:	7 CBD Energy Shot		
Batch/Lot Number:	23200	Date Received:	09/18/2023
Date Collected:		Collected By:	Self-Submitted

Notes:

Testing Summary

Testing Summary			Status: PASS	
Analysis:	Testing Date:	Status:	Notes:	
Pesticides	09/25/2023	PASS		Carallet Car
Heavy Metals	09/21/2023	PASS		
Residual Solvents	09/21/2023	PASS		
				, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>

Approved By:

— Da

Date: 09/25/2023

Brandon Forsyth, Ph.D State Chemist

CERTIFICATE OF ANALYSIS

 Pesticide Analysis
 Status:
 PASS

 Sample ID:
 HP23261-3
 Description:
 7 CBD Energy Shot

 Testing Date:
 09/25/2023
 Reviewed By:
 Cameron Cheyne

Method: ACL.AM.008 Analysis performed using Liquid Chromatography - Mass Spectrometry (LC-MS/MS)

Analyte	CAS Number	Result (ppm)	Action Level (ppm)	Status	Analyte	CAS Number	Result (ppm)	Action Level (ppm)	Status
Abamectin	71751-41-2	ND	0.5	PASS	Imazlil	35554-44-0	ND	0.2	PASS
Acephate	30560-19-1	ND	0.4	PASS	Imidacloprid	138261-41-3	ND	0.4	PASS
Acequinocyl	57960-19-7	ND	2	PASS	Kresoxim-methyl	143390-89-0	ND	0.4	PASS
Acetamiprid	135410-20-7	ND	0.2	PASS	Malathion	121-75-5	ND	0.2	PASS
Aldicarb	0116-06-03	ND	0.4	PASS	Metalaxyl	57837-19-1	ND	0.2	PASS
Azoxystrobin	131860-33-8	ND	0.2	PASS	Methiocarb	2032-65-7	ND	0.2	PASS
Bifenazate	149877-41-8	ND	0.2	PASS	Methomyi	16752-77-5	ND	0.4	PASS
Bifenthrin	82657-04-03	ND	0.2	PASS	Methyl parathion	298-00-0	ND	0.2	PASS
Boscalid	188425-85-6	ND	0.4	PASS	MGK-264	113-48-4	ND	0.2	PASS
Carbaryl	63-25-2	ND	0.2	PASS	Myclobutanil	88671-89-0	ND	0.2	PASS
Carbofuran	1563-66-2	ND	0.2	PASS	Naled	300-76-5	ND	0.5	PASS
Chlorantraniliprole	500008-45-7	ND	0.2	PASS	Oxamyl	23135-22-0	ND	1	PASS
Chlorfenapyr	122453-73-0	ND	1	PASS	Paciobutrazol	76738-62-0	ND	0.4	PASS
Chlorpyrifos	2921-88-2	NĐ	0.2	PASS	Permethrins	52645-53-1	ND	0.2	PASS
Clofentezine	74115-24-5	ND	0.2	PASS	Phosmet	0732-11-6	ND	0.2	PASS
Cyfluthrin	68359-37-5	ND	1	PASS	Piperonyl Butoxide	51-03-6	ND	2	PASS
Cypermethrin	52315-07-08	ND	1	PASS	Prallethrin	23031-36-9	ND	0.2	PASS
Daminozide	1596-84-5	ND	1	PASS	Propiconazole	60207-90-1	ND	0.4	PASS
Dichlorvos	62-73-7	ND	0.1	PASS	Propoxur	114-26-1	ND	0.2	PASS
Diazinon	333-41-5	ND	0.2	PASS	Pyrethrins	8003-34-7	ND	1	PASS
Dimethoate	60-51-5	ND	0.2	PASS	Pyridaben	96489-71-3	ND	0.2	PASS
Ethoprophos	13194-48-4	ND	0.2	PASS	Spinosad	168316-95-8	ND	0.2	PASS
Etofenprox	80844-07-01	ND	0.4	PASS	Spiromesifen	283594-90-1	ND	0.2	PASS
Etoxazole	153233-91-1	ND	0.2	PASS	Spirotetramat	203313-25-1	ND	0.2	PASS
Fenoxycarb	72490-01-08	ND	0.2	PASS	Spiroxamine	118134-30-8	ND	0.4	PASS
enpyroximate	134098-61-6	ND	0.4	PASS	Tebuconazole	80443-41-0	ND	0.4	PASS
-ipronil	120068-37-3	ND	0.4	PASS	Thiacloprid	111988-49-9	ND	0.2	PASS
Flonicamid	158062-67-0	ND	1	PASS	Thiamethoxam	153719-23-4	ND	0.2	PASS
Fludioxonil	131341-86-1	ND	0.4	PASS	Trifloxystrobin	141517-21-7	ND	0.2	PASS
Hexythiazox	78587-05-0	ND	1	PASS					

Notes:

 $\label{eq:ND} \textbf{ND} = \textbf{Not Detected, NQ} = \textbf{Not Quantifiable, NT} = \textbf{Not Tested, } \\ \textbf{<} \textbf{LOQ} = \textbf{Below the limit of quantification}$

CERTIFICATE OF ANALYSIS

Heavy Metal Analysis			Status:	PASS
Sample ID:	HP23261-3	Description:	7 CBD Energy Shot	
Testing Date:	09/21/2023	Reviewed By:	Cameron Cheyne	

Method: ACL.AM.004 Analysis performed using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

Analyte	CAS Number	Result (ppm)	Action Level (ppm)	Status
Arsenic	7440-38-2	ND	2	PASS
Cadmium	7440-43-9	ND	0.82	PASS
Lead	7439-92-1	ND	1.2	PASS
Mercury	7439-97-6	ND	0.4	PASS

Notes:

ND = Not Detected, NQ = Not Quantifiable, NT = Not Tested, <LOQ = Below the limit of quantification

CERTIFICATE OF ANALYSIS

 Residual Solvent Analysis
 Status: PASS

 Sample ID:
 HP23261-3
 Description:
 7 CBD Energy Shot

 Testing Date:
 09/21/2023
 Reviewed By:
 Cameron Cheyne

Method: ACL.AM.007 Analysis performed using Gas Chromatography - Mass Spectrometry (GC-MS/FID)

Analyte	CAS Number	Result (ppm)	Action Level (ppm)	Status	Analyte	CAS Number	Result (ppm)	Action Level (ppm)	Status
Acetone	67-64-1	ND	5000	PASS	Ethyl Ether	60-29-7	ND	5000	PASS
Acetonitrile	75-05-8	ND	410	PASS	Ethylbenzene	100-41-4	ND	See Xylenes	
Benzene	71-43-2	ND	2	PASS	Ethylene Glycol	107-21-1	ND	620	PASS
Butane	106-97-8	ND	5000	PASS	Ethylene Oxide	75-21-8	ND	50	PASS
1-Butanol	71-36-3	ND	5000	PASS	Heptane	142-82-5	ND	5000	PASS
2-Butanol	78-92-2	ND	5000	PASS	n-Hexane	110-54-3	<loq< td=""><td>290</td><td>PASS</td></loq<>	290	PASS
2-Butanone	78-93-3	ND	5000	PASS	Isopropyl Acetate	108-21-4	ND	5000	PASS
Cumene	98-82-8	ND	70	PASS	Methanol	67-56-1	ND	3000	PASS
Cyclohexane	110-82-7	ND	3880	PASS	2-Methylbutane	78-78-4	ND	5000	PASS
Dichloromethane	75-09-2	ND	600	PASS	2-Methylpentane	107-83-5	ND	290	PASS
1,2-Dimethoxyethane	110-71-4	ND	100	PASS	3-Methylpentane	96-14-0	ND	290	PASS
Dimethyl Sulfoxide	67-68-5	ND	5000	PASS	Methylpropane	75-28-5	ND	5000	PASS
N,N-Dimethylacetamide	127-19-5	ND	1090	PASS	Pentane	109-66-0	ND	5000	PASS
1,2-Dimethylbenzene	95-47-6	ND	See Xylenes	_	1-Pentanol	71-41-0	ND	5000	PASS
1,3-Dimethylbenzene	108-38-3	ND	See Xylenes		Propane	74-98-6	ND	5000	PASS
1,4-Dimethylbenzene	106-42-3	ND	See Xylenes	-	1-Propanol	71-23-8	ND	5000	PASS
2,2-Dimethylbutane	75-83-2	ND	290	PASS	2-Propanol	67-63-0	ND	5000	PASS
2,3-Dimethylbutane	79-29-8	ND	290	PASS	Pyridine	110-86-1	ND	100	PASS
N,N-Dimethylformamide	68-12-2	ND	880	PASS	Sulfolane	126-33-0	ND	160	PASS
1,4-Dioxane	123-9	ND	380	PASS	Tetrahydrofuran	109-99-9	ND	720	PASS
Ethanol	64-17-5	122	5000	PASS	Toluene	108-88-3	ND	890	PASS
2-Ethoxyethanol	110-80-5	ND	160	PASS	Xylenes	1330-20-7	ND	2170	PASS
Ethyl Acetate	141-78-6	ND	5000	PASS					

Notes:

ND = Not Detected, NQ = Not Quantifiable, NT = Not Tested, <LOQ = Below the limit of quantification